Manifolds and Group actions

Homework 5

Mandatory Exercise 1. (5 Points)

Let $n \in \mathbb{N}$ and let $S^{2n-1} \subset \mathbb{R}^{2n}$ be the odd dimensional sphere. Construct a non-vanishing vector field on the odd dimensional sphere.

Mandatory Exercise 2. (10 points)

Let $F: M \to N$ be a diffeomorphism. Let φ_t be the flow of a complete vector field X on M. Compute the flow of $F_*(X)$.

Mandatory Exercise 3. (5 points)

Let X, Y, Z be vector fields on M and $f: M \to \mathbb{R}$ a function. Prove the following identities

$$[X, fY] = X(f)Y + f[X, Y].$$

$$[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0$$

Suggested Exercise 1. (0 Points)

Let X, Y and Z be vector fields on \mathbb{R}^2 given by

$$X_{(x,y)} = \frac{\partial}{\partial x}, \quad Y_{(x,y)} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}, \quad Z_{(x,y)} = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}.$$

- a) Compute the flows of X, Y, Z and investigate its properties. Check that the flows of Y and Z commute.
- b) Compute the Lie brackets [X, Y] and [Y, Z] and discuss their flows.

Suggested Exercise 2. (0 points) Show that the vector field X on \mathbb{R} given by

$$X_x = x^2 \frac{\partial}{\partial x},$$

is not complete.

Hand in on Monday 22 of May in the pigeonhole on the third floor.